Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Cell ; 185(12): 2086-2102.e22, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-2293192

ABSTRACT

Across biological scales, gene-regulatory networks employ autorepression (negative feedback) to maintain homeostasis and minimize failure from aberrant expression. Here, we present a proof of concept that disrupting transcriptional negative feedback dysregulates viral gene expression to therapeutically inhibit replication and confers a high evolutionary barrier to resistance. We find that nucleic-acid decoys mimicking cis-regulatory sites act as "feedback disruptors," break homeostasis, and increase viral transcription factors to cytotoxic levels (termed "open-loop lethality"). Feedback disruptors against herpesviruses reduced viral replication >2-logs without activating innate immunity, showed sub-nM IC50, synergized with standard-of-care antivirals, and inhibited virus replication in mice. In contrast to approved antivirals where resistance rapidly emerged, no feedback-disruptor escape mutants evolved in long-term cultures. For SARS-CoV-2, disruption of a putative feedback circuit also generated open-loop lethality, reducing viral titers by >1-log. These results demonstrate that generating open-loop lethality, via negative-feedback disruption, may yield a class of antimicrobials with a high genetic barrier to resistance.


Subject(s)
Antiviral Agents , Gene Expression Regulation, Viral/drug effects , Animals , Antiviral Agents/pharmacology , Drug Resistance, Viral , Gene Regulatory Networks/drug effects , Mice , SARS-CoV-2/drug effects , Virus Replication
2.
J Virol ; 97(3): e0165022, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2246712

ABSTRACT

Truncations of the cytoplasmic tail (CT) of entry proteins of enveloped viruses dramatically increase the infectivity of pseudoviruses (PVs) bearing these proteins. Several mechanisms have been proposed to explain this enhanced entry, including an increase in cell surface expression. However, alternative explanations have also been forwarded, and the underlying mechanisms for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein remain undetermined. Here, we show that the partial or complete deletion of the CT (residues 19 to 35) does not modify SARS-CoV-2 S protein expression on the cell surface when the S2 subunit is measured, whereas it is significantly increased when the S1 subunit is measured. We also show that the higher level of S1 in these CT-truncated S proteins reflects the decreased dissociation of the S1 subunit from the S2 subunit. In addition, we demonstrate that CT truncation further promotes S protein incorporation into PV particles, as indicated by biochemical analyses and cryo-electron microscopy. Thus, our data show that two distinct mechanisms contribute to the markedly increased infectivity of PVs carrying CT-truncated SARS-CoV-2 S proteins and help clarify the interpretation of the results of studies employing such PVs. IMPORTANCE Various forms of PVs have been used as tools to evaluate vaccine efficacy and study virus entry steps. When PV infectivity is inherently low, such as that of SARS-CoV-2, a CT-truncated version of the viral entry glycoprotein is widely used to enhance PV infectivity, but the mechanism underlying this enhanced PV infectivity has been unclear. Here, our study identified two mechanisms by which the CT truncation of the SARS-CoV-2 S protein dramatically increases PV infectivity: a reduction of S1 shedding and an increase in S protein incorporation into PV particles. An understanding of these mechanisms can clarify the mechanistic bases for the differences observed among various assays employing such PVs.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virion , Humans , COVID-19/virology , Cryoelectron Microscopy , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virion/genetics , Virion/pathogenicity , Gene Expression Regulation, Viral/genetics
3.
J Cell Biol ; 221(11)2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2097224

ABSTRACT

Viruses co-opt host proteins to carry out their lifecycle. Repurposed host proteins may thus become functionally compromised; a situation analogous to a loss-of-function mutation. We term such host proteins as viral-induced hypomorphs. Cells bearing cancer driver loss-of-function mutations have successfully been targeted with drugs perturbing proteins encoded by the synthetic lethal (SL) partners of cancer-specific mutations. Similarly, SL interactions of viral-induced hypomorphs can potentially be targeted as host-based antiviral therapeutics. Here, we use GBF1, which supports the infection of many RNA viruses, as a proof-of-concept. GBF1 becomes a hypomorph upon interaction with the poliovirus protein 3A. Screening for SL partners of GBF1 revealed ARF1 as the top hit, disruption of which selectively killed cells that synthesize 3A alone or in the context of a poliovirus replicon. Thus, viral protein interactions can induce hypomorphs that render host cells selectively vulnerable to perturbations that leave uninfected cells otherwise unscathed. Exploiting viral-induced vulnerabilities could lead to broad-spectrum antivirals for many viruses, including SARS-CoV-2.


Subject(s)
Guanine Nucleotide Exchange Factors , Poliovirus , Viral Core Proteins , Humans , Guanine Nucleotide Exchange Factors/metabolism , Synthetic Lethal Mutations , Virus Replication , Gene Expression Regulation, Viral , Viral Core Proteins/genetics , Viral Core Proteins/metabolism , Host-Pathogen Interactions
4.
DNA Cell Biol ; 41(6): 544-563, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1890821

ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through recognition of cognate sequences and interference of transcriptional, translational, or epigenetic processes. Hundreds of miRNA genes have been found in diverse viruses, and many of these are phylogenetically conserved. Respiratory viruses are the most frequent causative agents of disease in humans, with a significant impact on morbidity and mortality worldwide. Recently, the role of miRNAs in respiratory viral gene regulation, as well as host gene regulation during disease progression, has become a field of interest. This review highlighted the importance of various miRNAs and their potential role in fighting with respiratory viruses as therapeutic molecules with a focus on COVID-19.


Subject(s)
MicroRNAs , Respiratory Tract Diseases , Viruses , Biomarkers , COVID-19/genetics , Gene Expression Regulation, Viral , Humans , MicroRNAs/genetics , Respiratory Tract Diseases/virology , Viruses/genetics
5.
Life Sci Alliance ; 5(8)2022 08.
Article in English | MEDLINE | ID: covidwho-1811991

ABSTRACT

Fundamental to viral biology is identification and annotation of viral genes and their function. Determining the level of coronavirus gene expression is inherently difficult due to the positive stranded RNA genome and the identification of subgenomic RNAs (sgRNAs) that are required for expression of most viral genes. We developed a bioinformatic pipeline to analyze metatranscriptomic data from 20 independent studies encompassing 588 individual samples and 10 coronavirus species. This comparative analysis defined a core sgRNA repertoire for SARS-CoV-2 and found novel sgRNAs that could encode functional short peptides. Relevant to coronavirus infectivity and transmission, we also observed that the ratio of Spike sgRNA to Nucleocapsid one is highest in SARS-CoV-2, among the ß-coronaviruses examined. Furthermore, the adjustment of this ratio can be made by modifications to the viral RNA replication machinery, representing a form of viral gene regulation that may be involved in host adaption.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Gene Expression Regulation, Viral , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Virus Replication/genetics
6.
Sci Adv ; 8(8): eabi6110, 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1714330

ABSTRACT

The spread of SARS-CoV-2 and ongoing COVID-19 pandemic underscores the need for new treatments. Here we report that cannabidiol (CBD) inhibits infection of SARS-CoV-2 in cells and mice. CBD and its metabolite 7-OH-CBD, but not THC or other congeneric cannabinoids tested, potently block SARS-CoV-2 replication in lung epithelial cells. CBD acts after viral entry, inhibiting viral gene expression and reversing many effects of SARS-CoV-2 on host gene transcription. CBD inhibits SARS-CoV-2 replication in part by up-regulating the host IRE1α RNase endoplasmic reticulum (ER) stress response and interferon signaling pathways. In matched groups of human patients from the National COVID Cohort Collaborative, CBD (100 mg/ml oral solution per medical records) had a significant negative association with positive SARS-CoV-2 tests. This study highlights CBD as a potential preventative agent for early-stage SARS-CoV-2 infection and merits future clinical trials. We caution against use of non-medical formulations including edibles, inhalants or topicals as a preventative or treatment therapy at the present time.


Subject(s)
Antiviral Agents/pharmacology , Cannabidiol/pharmacology , Host-Pathogen Interactions/drug effects , Immunity, Innate/drug effects , SARS-CoV-2/drug effects , A549 Cells , Animals , Antiviral Agents/chemistry , COVID-19/virology , Cannabidiol/chemistry , Cannabidiol/metabolism , Chlorocebus aethiops , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/genetics , Endoribonucleases/metabolism , Epithelial Cells/virology , Female , Gene Expression Regulation, Viral/drug effects , Host-Pathogen Interactions/physiology , Humans , Interferons/metabolism , Mice , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , SARS-CoV-2/physiology , Vero Cells , Virus Internalization/drug effects , Virus Replication/drug effects , COVID-19 Drug Treatment
7.
Mar Drugs ; 20(2)2022 Feb 17.
Article in English | MEDLINE | ID: covidwho-1708635

ABSTRACT

Omicron is an emerging SARS-CoV-2 variant, evolved from the Indian delta variant B.1.617.2, which is currently infecting worldwide. The spike glycoprotein, an important molecule in the pathogenesis and transmissions of SARS-CoV-2 variants, especially omicron B.1.1.529, shows 37 mutations distributed over the trimeric protein domains. Notably, fifteen of these mutations reside in the receptor-binding domain of the spike glycoprotein, which may alter transmissibility and infectivity. Additionally, the omicron spike evades neutralization more efficiently than the delta spike. Most of the therapeutic antibodies are ineffective against the omicron variant, and double immunization with BioNTech-Pfizer (BNT162b2) might not adequately protect against severe disease induced by omicron B.1.1.529. So far, no efficient antiviral drugs are available against omicron. The present study identified the promising inhibitors from seaweed's bioactive compounds to inhibit the omicron variant B.1.1.529. We have also compared the seaweed's compounds with the standard drugs ceftriaxone and cefuroxime, which were suggested as beneficial antiviral drugs in COVID-19 treatment. Our molecular docking analysis revealed that caffeic acid hexoside (-6.4 kcal/mol; RMSD = 2.382 Å) and phloretin (-6.3 kcal/mol; RMSD = 0.061 Å) from Sargassum wightii (S. wightii) showed the inhibitory effect against the crucial residues ASN417, SER496, TYR501, and HIS505, which are supported for the inviolable omicron and angiotensin-converting enzyme II (ACE2) receptor interaction. Cholestan-3-ol, 2-methylene-, (3beta, 5 alpha) (CMBA) (-6.0 kcal/mol; RMSD = 3.074 Å) from Corallina officinalis (C. officinalis) manifested the strong inhibitory effect against the omicron RBD mutated residues LEU452 and ALA484, was magnificently observed as the essential residues in Indian delta variant B.1.617.2 previously. The standard drugs (ceftriaxone and cefuroxime) showed no or less inhibitory effect against RBD of omicron B.1.1.529. The present study also emphasized the pharmacological properties of the considered chemical compounds. The results could be used to develop potent seaweed-based antiviral drugs and/or dietary supplements to treat omicron B.1.1529-infected patients.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Gene Expression Regulation, Viral/drug effects , Molecular Docking Simulation , SARS-CoV-2/metabolism , Seaweed/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Mutation , Protein Binding , Protein Conformation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Drug Treatment
8.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1700574

ABSTRACT

Influenza A virus (IAV) is a member of the single-stranded RNA (ssRNA) family of viruses. The most recent global pandemic caused by the SARS-CoV-2 virus has shown the major threat that RNA viruses can pose to humanity. In comparison, influenza has an even higher pandemic potential as a result of its high rate of mutations within its relatively short (<13 kbp) genome, as well as its capability to undergo genetic reassortment. In light of this threat, and the fact that RNA structure is connected to a broad range of known biological functions, deeper investigation of viral RNA (vRNA) structures is of high interest. Here, for the first time, we propose a secondary structure for segment 8 vRNA (vRNA8) of A/California/04/2009 (H1N1) formed in the presence of cellular and viral components. This structure shows similarities with prior in vitro experiments. Additionally, we determined the location of several well-defined, conserved structural motifs of vRNA8 within IAV strains with possible functionality. These RNA motifs appear to fold independently of regional nucleoprotein (NP)-binding affinity, but a low or uneven distribution of NP in each motif region is noted. This research also highlights several accessible sites for oligonucleotide tools and small molecules in vRNA8 in a cellular environment that might be a target for influenza A virus inhibition on the RNA level.


Subject(s)
Gene Expression Regulation, Viral , Genome, Viral/genetics , Influenza A Virus, H1N1 Subtype/genetics , Nucleic Acid Conformation , RNA, Viral/chemistry , Animals , Base Sequence , Dogs , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Models, Molecular , Nucleotide Motifs/genetics , RNA Folding , RNA, Viral/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
9.
Virology ; 568: 56-71, 2022 03.
Article in English | MEDLINE | ID: covidwho-1665518

ABSTRACT

SARS-CoV-2, the seventh coronavirus known to infect humans, can cause severe life-threatening respiratory pathologies. To better understand SARS-CoV-2 evolution, genome-wide analyses have been made, including the general characterization of its codons usage profile. Here we present a bioinformatic analysis of the evolution of SARS-CoV-2 codon usage over time using complete genomes collected since December 2019. Our results show that SARS-CoV-2 codon usage pattern is antagonistic to, and it is getting farther away from that of the human host. Further, a selection of deoptimized codons over time, which was accompanied by a decrease in both the codon adaptation index and the effective number of codons, was observed. All together, these findings suggest that SARS-CoV-2 could be evolving, at least from the perspective of the synonymous codon usage, to become less pathogenic.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Codon Usage , Codon , Evolution, Molecular , Pandemics , SARS-CoV-2/genetics , Betacoronavirus/classification , Betacoronavirus/genetics , Gene Expression Regulation, Viral , Genome, Viral , Genomics/methods , Humans , Open Reading Frames , Organ Specificity , Phylogeny
10.
Sci Rep ; 12(1): 1329, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1655620

ABSTRACT

The SARS-CoV-2 pandemic has challenged humankind's ability to quickly determine the cascade of health effects caused by a novel infection. Even with the unprecedented speed at which vaccines were developed and introduced into society, identifying therapeutic interventions and drug targets for patients infected with the virus remains important as new strains of the virus evolve, or future coronaviruses may emerge that are resistant to current vaccines. The application of transcriptomic RNA sequencing of infected samples may shed new light on the pathways involved in viral mechanisms and host responses. We describe the application of the previously developed "dual RNA-seq" approach to investigate, for the first time, the co-regulation between the human and SARS-CoV-2 transcriptomes. Together with differential expression analysis, we describe the tissue specificity of SARS-CoV-2 expression, an inferred lipopolysaccharide response, and co-regulation of CXCL's, SPRR's, S100's with SARS-CoV-2 expression. Lipopolysaccharide response pathways in particular offer promise for future therapeutic research and the prospect of subgrouping patients based on chemokine expression that may help explain the vastly different reactions patients have to infection. Taken together these findings highlight unappreciated SARS-CoV-2 expression signatures and emphasize new considerations and mechanisms for SARS-CoV-2 therapeutic intervention.


Subject(s)
COVID-19 , Gene Expression Regulation, Viral , RNA-Seq , SARS-CoV-2 , Transcriptome , A549 Cells , COVID-19/genetics , COVID-19/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
11.
Retina ; 42(2): 236-243, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1642410

ABSTRACT

PURPOSE: Retinal manifestations have been described in COVID-19 patients, but it is unknown whether SARS-CoV-2, the causal agent in COVID-19, can directly infect posterior ocular tissues. Here, we investigate SARS-CoV-2 host factor gene expression levels and their distribution across retinal and choroidal cell types. METHODS: Query of single-cell RNA sequencing data from human retina and choroid. RESULTS: We find no relevant expression of two key genes involved in SARS-CoV-2 entry, ACE2 and TMPRSS2, in retinal cell types. By contrast, scarce expression levels could be detected in choroidal vascular cells. CONCLUSION: Given the current understanding of viral host cell entry, these findings suggest a low vulnerability of the posterior eye segment to SARS-CoV-2 with a potential weak spot in the vasculature, which could play a putative causative role in ocular lesions in COVID-19 patients. This may qualify the vasculature of the human posterior eye segment as an in vivo biomarker for life-threatening vascular occlusions in COVID-19 patients.


Subject(s)
COVID-19/epidemiology , Eye Infections, Viral/virology , Gene Expression Regulation, Viral , Posterior Eye Segment/virology , SARS-CoV-2 , Serine Endopeptidases/genetics , Virus Internalization , COVID-19/virology , Eye Infections, Viral/epidemiology , Eye Infections, Viral/pathology , Humans , Posterior Eye Segment/pathology , RNA, Viral/genetics , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/virology , Serine Endopeptidases/biosynthesis
12.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: covidwho-1642084

ABSTRACT

Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants pose a challenge to controlling the COVID-19 pandemic. Previous studies indicate that clinical samples collected from individuals infected with the Delta variant may contain higher levels of RNA than previous variants, but the relationship between levels of viral RNA and infectious virus for individual variants is unknown. We measured infectious viral titer (using a microfocus-forming assay) and total and subgenomic viral RNA levels (using RT-PCR) in a set of 162 clinical samples containing SARS-CoV-2 Alpha, Delta, and Epsilon variants that were collected in identical swab kits from outpatient test sites and processed soon after collection. We observed a high degree of variation in the relationship between viral titers and RNA levels. Despite this, the overall infectivity differed among the three variants. Both Delta and Epsilon had significantly higher infectivity than Alpha, as measured by the number of infectious units per quantity of viral E gene RNA (5.9- and 3.0-fold increase; P < 0.0001, P = 0.014, respectively) or subgenomic E RNA (14.3- and 6.9-fold increase; P < 0.0001, P = 0.004, respectively). In addition to higher viral RNA levels reported for the Delta variant, the infectivity (amount of replication competent virus per viral genome copy) may be increased compared to Alpha. Measuring the relationship between live virus and viral RNA is an important step in assessing the infectivity of novel SARS-CoV-2 variants. An increase in the infectivity for Delta may further explain increased spread, suggesting a need for increased measures to prevent viral transmission.


Subject(s)
COVID-19/epidemiology , Gene Expression Regulation, Viral , Genome, Viral , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Animals , COVID-19/pathology , COVID-19/transmission , COVID-19/virology , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus Envelope Proteins/genetics , Coronavirus Envelope Proteins/metabolism , Hepatocytes/metabolism , Hepatocytes/virology , Humans , RNA, Viral/metabolism , SARS-CoV-2/classification , SARS-CoV-2/metabolism , Vero Cells , Viral Load , Virulence
13.
Int J Biol Macromol ; 203: 466-480, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1630871

ABSTRACT

The SARS-CoV-2 nucleocapsid protein (N) is a multifunctional promiscuous nucleic acid-binding protein, which plays a major role in nucleocapsid assembly and discontinuous RNA transcription, facilitating the template switch of transcriptional regulatory sequences (TRS). Here, we dissect the structural features of the N protein N-terminal domain (N-NTD) and N-NTD plus the SR-rich motif (N-NTD-SR) upon binding to single and double-stranded TRS DNA, as well as their activities for dsTRS melting and TRS-induced liquid-liquid phase separation (LLPS). Our study gives insights on the specificity for N-NTD(-SR) interaction with TRS. We observed an approximation of the triple-thymidine (TTT) motif of the TRS to ß-sheet II, giving rise to an orientation difference of ~25° between dsTRS and non-specific sequence (dsNS). It led to a local unfavorable energetic contribution that might trigger the melting activity. The thermodynamic parameters of binding of ssTRSs and dsTRS suggested that the duplex dissociation of the dsTRS in the binding cleft is entropically favorable. We showed a preference for TRS in the formation of liquid condensates when compared to NS. Moreover, our results on DNA binding may serve as a starting point for the design of inhibitors, including aptamers, against N, a possible therapeutic target essential for the virus infectivity.


Subject(s)
COVID-19/virology , Nucleic Acids/metabolism , Nucleocapsid Proteins/metabolism , Protein Interaction Domains and Motifs , SARS-CoV-2/physiology , Binding Sites , DNA/chemistry , DNA/metabolism , Gene Expression Regulation, Viral , Host-Pathogen Interactions , Humans , Hydrogen Bonding , Models, Molecular , Nucleic Acids/chemistry , Nucleocapsid Proteins/chemistry , Protein Binding , RNA/chemistry , RNA/metabolism , Spectrum Analysis , Structure-Activity Relationship
14.
Cell Mol Life Sci ; 79(2): 75, 2022 Jan 17.
Article in English | MEDLINE | ID: covidwho-1630170

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a new member of the Betacoronaviridae family, responsible for the recent pandemic outbreak of COVID-19. To start exploring the molecular events that follow host cell infection, we queried VirusCircBase and identified a circular RNA (circRNA) predicted to be synthesized by SARS-CoV-2, circ_3205, which we used to probe: (i) a training cohort comprised of two pools of cells from three nasopharyngeal swabs of SARS-CoV-2 infected (positive) or uninfected (negative, UCs) individuals; (ii) a validation cohort made up of 12 positive and 3 negative samples. The expression of circRNAs, miRNAs and miRNA targets was assayed through real-time PCR. CircRNA-miRNA interactions were predicted by TarpMiR, Analysis of Common Targets for circular RNAs (ACT), and STarMir tools. Enrichment of the biological processes and the list of predicted miRNA targets were retrieved from DIANA miRPath v3.0. Our results showed that the predicted SARS-CoV-2 circ_3205 was expressed only in positive samples and its amount positively correlated with that of SARS-CoV-2 Spike (S) mRNA and the viral load (r values = 0.80952 and 0.84867, Spearman's correlation test, respectively). Human (hsa) miR-298 was predicted to interact with circ_3205 by all three predictive tools. KCNMB4 and PRKCE were predicted as hsa-miR-298 targets. Interestingly, the function of both is correlated with blood coagulation and immune response. KCNMB4 and PRKCE mRNAs were upregulated in positive samples as compared to UCs (6 and 8.1-fold, p values = 0.049 and 0.02, Student's t test, respectively) and their expression positively correlated with that of circ_3205 (r values = 0.6 and 0.25, Spearman's correlation test, respectively). We propose that our results convincingly suggest that circ_3205 is a circRNA synthesized by SARS-CoV-2 upon host cell infection and that it may behave as a competitive endogenous RNA (ceRNA), sponging hsa-miR-298 and contributing to the upregulation of KCNMB4 and PRKCE mRNAs.


Subject(s)
COVID-19/genetics , COVID-19/metabolism , RNA, Circular/genetics , RNA, Viral , SARS-CoV-2/genetics , Computational Biology , Gene Expression Regulation, Viral , Gene Regulatory Networks , Humans , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Nasopharynx/virology , Nerve Tissue Proteins/genetics , Protein Interaction Mapping , Protein Kinase C-epsilon/genetics , Reproducibility of Results
15.
Bioengineered ; 13(2): 2486-2497, 2022 02.
Article in English | MEDLINE | ID: covidwho-1625949

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can target cardiomyocytes (CMs) to directly invade the heart resulting in high mortality. This study aims to explore the biological characteristics of SARS-CoV-2 infected myocardium based on omics by collecting transcriptome data and analyzing them with a series of bioinformatics tools. Totally, 86 differentially expressed genes (DEGs) were discovered in SARS-CoV-2 infected CMs, and 15 miRNAs were discovered to target 60 genes. Functional enrichment analysis indicated that these DEGs were mainly enriched in the inflammatory signaling pathway. After the protein-protein interaction (PPI) network was constructed, several genes including CCL2 and CXCL8 were regarded as the hub genes. SRC inhibitor saracatinib was predicted to potentially act against the cardiac dysfunction induced by SARS-CoV-2. Among the 86 DEGs, 28 were validated to be dysregulated in SARS-CoV-2 infected hearts. Gene Set Enrichment Analysis (GSEA) analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that malaria, IL-17 signaling pathway, and complement and coagulation cascades were significantly enriched. Immune infiltration analysis indicated that 'naive B cells' was significantly increased in the SARS-CoV-2 infected heart. The above results may help to improve the prognosis of patients with COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/virology , Heart/physiopathology , Heart/virology , Myocardium/pathology , SARS-CoV-2 , Blood Coagulation , Chemokine CCL2/biosynthesis , Complement System Proteins , Computational Biology , Gene Expression Profiling , Gene Expression Regulation, Viral , Genome, Human , Humans , Inflammation , Interleukin-17/blood , Interleukin-8/biosynthesis , MicroRNAs/metabolism , Prognosis , Protein Interaction Mapping , Signal Transduction
16.
Sci Rep ; 11(1): 24442, 2021 12 24.
Article in English | MEDLINE | ID: covidwho-1577650

ABSTRACT

Therapeutic interventions targeting viral infections remain a significant challenge for both the medical and scientific communities. While specific antiviral agents have shown success as therapeutics, viral resistance inevitably develops, making many of these approaches ineffective. This inescapable obstacle warrants alternative approaches, such as the targeting of host cellular factors. Respiratory syncytial virus (RSV), the major respiratory pathogen of infants and children worldwide, causes respiratory tract infection ranging from mild upper respiratory tract symptoms to severe life-threatening lower respiratory tract disease. Despite the fact that the molecular biology of the virus, which was originally discovered in 1956, is well described, there is no vaccine or effective antiviral treatment against RSV infection. Here, we demonstrate that targeting host factors, specifically, mTOR signaling, reduces RSV protein production and generation of infectious progeny virus. Further, we show that this approach can be generalizable as inhibition of mTOR kinases reduces coronavirus gene expression, mRNA transcription and protein production. Overall, defining virus replication-dependent host functions may be an effective means to combat viral infections, particularly in the absence of antiviral drugs.


Subject(s)
Coronavirus/metabolism , Respiratory Syncytial Virus, Human/metabolism , TOR Serine-Threonine Kinases/metabolism , Viral Proteins/metabolism , A549 Cells , Coronavirus/drug effects , Coronavirus/genetics , Gene Expression Regulation, Viral/drug effects , Humans , Protein Biosynthesis/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , RNA Interference , RNA, Small Interfering/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/antagonists & inhibitors , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Regulatory-Associated Protein of mTOR/antagonists & inhibitors , Regulatory-Associated Protein of mTOR/genetics , Regulatory-Associated Protein of mTOR/metabolism , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Virus, Human/isolation & purification , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , Viral Proteins/genetics
17.
Int Microbiol ; 24(1): 123-124, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1573644

ABSTRACT

Until now, there is no current vaccine or treatment against SARS-CoV-2. There are previous successful RNAi studies performed on SARS-CoV. Therefore, similar line of investigation against SARS-CoV-2 could be successful.


Subject(s)
COVID-19/therapy , COVID-19/virology , RNA Interference , SARS-CoV-2/genetics , Animals , Gene Expression Regulation, Viral , Genome, Viral , Humans , SARS-CoV-2/physiology , Viral Proteins/genetics , Viral Proteins/metabolism
18.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Article in English | MEDLINE | ID: covidwho-1569356

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), continues to be a pressing health concern. In this study, we investigated the impact of SARS-CoV-2 infection on host microRNA (miRNA) populations in three human lung-derived cell lines, as well as in nasopharyngeal swabs from SARS-CoV-2-infected individuals. We did not detect any major and consistent differences in host miRNA levels after SARS-CoV-2 infection. However, we unexpectedly discovered a viral miRNA-like small RNA, named CoV2-miR-O7a (for SARS-CoV-2 miRNA-like ORF7a-derived small RNA). Its abundance ranges from low to moderate as compared to host miRNAs and it associates with Argonaute proteins-core components of the RNA interference pathway. We identify putative targets for CoV2-miR-O7a, including Basic Leucine Zipper ATF-Like Transcription Factor 2 (BATF2), which participates in interferon signaling. We demonstrate that CoV2-miR-O7a production relies on cellular machinery, yet is independent of Drosha protein, and is enhanced by the presence of a strong and evolutionarily conserved hairpin formed within the ORF7a sequence.


Subject(s)
Gene Expression Regulation, Viral , RNA, Small Untranslated/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Viral Proteins/genetics , COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , Humans , RNA, Small Untranslated/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics
19.
RNA Biol ; 19(1): 1-11, 2022.
Article in English | MEDLINE | ID: covidwho-1569455

ABSTRACT

The role for circulating miRNAs as biomarkers of the COVID-19 disease remains uncertain. We analysed the circulating miRNA profile in twelve COVID-19 patients with moderate-severe disease. This analysis was conducted by performing next generation sequencing (NGS) followed by real-time polymerase chain reaction (RT-qPCR). Compared with healthy controls, we detected significant changes in the circulating miRNA profile of COVID-19 patients. The miRNAs that were significantly altered in all the COVID-19 patients were miR-150-5p, miR-375, miR-122-5p, miR-494-3p, miR-3197, miR-4690-5p, miR-1915-3p, and miR-3652. Infection assays performed using miRNA mimics in HEK-293 T cells determined miR-150-5p to have a crucial role in SARS-CoV-2 infection and this was based on the following data: (i) miR-150-5p mimic lowered in vitro SARS-CoV-2 infection; (ii) miR-150-5p inhibitor reversed the effects of miR-150-5p mimic on SARS-CoV-2 infection of cells; and (iii) a novel miRNA recognition element (MRE) was identified in the coding strand of SARS-CoV-2 nsp10, the expression of which could be inhibited by miR-150-5p mimic. Our findings identified crucial miRNA footprints in COVID-19 patients with moderate-severe disease. A combination of co-transfection and Western blotting experiments also determined the ability of miR-150-5p to inhibit SARS-CoV-2 infection via directly interacting with MRE in the coding strand of nsp10. Our investigation showed that a sharp decline in the miR-150-5p plasma levels in COVID-19 patients may support enhanced SARS-CoV-2 infection. Furthermore, this study provides insight into one possible mechanism by which COVID-19-induced changes to miR-150-5p levels may promote SARS-CoV-2 infection via modulating nsp10 expression.


Subject(s)
COVID-19/metabolism , Gene Expression Regulation, Viral , MicroRNAs/metabolism , SARS-CoV-2/metabolism , Viral Regulatory and Accessory Proteins/biosynthesis , Animals , COVID-19/genetics , Cell Line, Tumor , Chlorocebus aethiops , HEK293 Cells , Humans , MicroRNAs/genetics , SARS-CoV-2/genetics , Vero Cells , Viral Regulatory and Accessory Proteins/genetics
20.
J Ocul Pharmacol Ther ; 38(1): 56-65, 2022.
Article in English | MEDLINE | ID: covidwho-1565952

ABSTRACT

Purpose: Recent studies have shown the presence of SARS-CoV-2 entry factors on the ocular surface, identifying the eye as an additional entry route for the virus. Moreover, the coexpression of angiotensin-converting enzyme 2 (ACE2) with other SARS-CoV-2 entry factors [transmembrane protease serine 2 (TMPRSS2), transmembrane protease serine 4 (TMPRSS4), and dipeptidyl peptidase-4 (DPP4)] facilitates the virus infection. Methods: Here, we performed a study over 10 adult corneal and limbal tissues from human donors, both male and female between 58 and 85 years of age. Some of the main virus entry factors were analyzed and their expression was quantified and correlated with the age and sex of the donors through western blot. The receptors' localization was investigated through immunofluorescence. Results: Immunofluorescence confirmed the localization of ACE2 and TMPRSS2 on the ocular surface and showed, for the first time, the localization of TMPRSS4 and DPP4 in limbal and corneal epithelial superficial cells. The quantitative analysis showed that the expression of SARS-CoV-2 entry factors on corneal and limbal cells is likely to be modulated in an age-dependent manner, in agreement with the increased susceptibility to COVID-19 in the elderly. Moreover, we found a relationship between the expression of TMPRSS proteases with the activation state of limbal cells in 80-year-old donors. Conclusion: This study provides information on the expression of SARS-CoV-2 entry factors on the ocular surface of 10 adult human donors and is a first observation of a possible age-dependent modulation on corneal and limbal tissues. Our data pave the way to further investigate the susceptibility to the infection through the ocular surface in the elderly.


Subject(s)
Conjunctiva/metabolism , Conjunctiva/virology , Cornea/metabolism , Cornea/virology , SARS-CoV-2/metabolism , Virus Internalization , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Female , Gene Expression Regulation, Viral/physiology , Humans , Male , Middle Aged , Serine Endopeptidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL